lesson plan

Session-2024-25 Class-B.sc I (Non- medical) Course- CC-1/MCC-1 (**Mechanics**) Paper-B23-PHY-101 Date- 22 July ,2024 to 22 November , 2024 Faulty name -Ms Rachna

July	unit-1Fundamental of dynamics: Rigid body, Moment of Inertia, Radius of Gyration, Theorems of perpendicularand parallel axis (with proof), Moment of Inertia of ring, Disc, Angular Disc,Solid cylinder, Solid sphere.
August	Moment of inertia of Hollow sphere, Rectangular plate, Square plate, Solid cone,Triangular plate, Torque, Rotational Kinetic Energy, Angular momentum,Law of conservation of angular momentum, Rolling motion, condition for pure rolling, acceleration of body rolling down an inclined plane, Flywheel, Moment of Inertia of an irregular body.unit-2 Elasticity Deforming force, Elastic limit, stress, strain and their types,Hooke 's law, Modulus of rigidity, Relation between shear angle and angle of twist.and revision
September	Elastic energy stored/volume in an elastic body, Elongation produced in heavy rod due to its own weight and elastic potential energy stored in it, Tension in rotating rod, Poisson's ratio and its limiting value,Elastic Constants and their relations. Torque required for twisting cylinder,Hollow shaft is stiffer than solid one. Bending of beam, bending moment and its magnitude, Flexural rigidity, Geometrical moment of inertia for beam of rectangular cross-section and circular cross-section. Bending of cantilever (loaded by a weight W at its free end), weight of cantilever uniformly distributed over its entire length. Dispersion of a centrally loaded beam supported at its ends, determination of elastic constants for the material of wire using Searle's method.

October	<u>Unit-3</u> <i>Special theory of Relativity</i> : Michelson's Morley experiment and its outcomes, Postulates of special theory of relativity, Lorentz Transformations, Simultaneity and order of events, Lorentz contraction, Time dilation, Relativistic transformation of velocity, relativistic addition of velocities, variation of mass-energy equivalence, relativistic Doppler effect, relativistic kinematics, transformation of energy and momentum,transformation of force, Problems of relativistic dynamics.
November	<u>unit-4</u> . <i>Gravitation and central force motion</i> : Law of gravitation, Potential and field due to spherical shell and solid sphere. Motion of a particle under central force field, Two body problem and its reduction to one body problem and its solution, compound pendulum or physical pendulum in form of elliptical lamina and expression of time period, determination of g by means of bar pendulum, Normal coordinates and normal modes,Normal modes of vibration for given spring mass system, possible angular frequencies of oscillation of two identical simple pendulums of length (1) and small bob of mass (m0 joined together with spring of spring constant(k) and revision.

Practicum	1. Measurement of length (or diameter) using Vernier Caliper, screw
	gauge and travelling microscope.
	2. Moment of Inertia of a Fly Wheel.
	3. Moment of Inertia of irregular body using a Torsion Pendulum.
	4. Modulus of rigidity of material of wire by Maxwell's Needle.
	5. Elastic constants by Searle's method.
	6. To determine the value of 'g' by using Bar pendulum.
	7. To campare moment of inertia of solid sphere, hollow sphere and solid disc
	of same mass with the help of Torsion pendulum.
	or sume mass whill the help of forston pendulum.

lesson plan

Session-2024-25 Class-B.sc I (Non- Medical) Course -CC-2 (**Electricity,Magnetism and electromagnetic theory**) Paper- B23-PHY-201 Date- 01 January ,2025 to 30 April, 2025 <u>Faulty name - Ms. Rachna</u>

January	unit-1 vector background and Electric Field
	: Gradient of a scalar and its physical significance, Line, Surface and Volume integrals of a vector and their physical significance, Flux of a vector field, Divergence and curl of a vector and their physical significance, Gauss 's divergence theorem, Stoke 's theorem. Conservative nature of Electrostatic Field, Electrostatic Potential, Potential as line integral of field, potential difference Derivation of electric field E from potential as gradient. Derivation of Laplace and Poisson equations. Electric flux, Gauss 's Law, Differential form of Gauss 's law and applications of Gauss 's law. Mechanical force of charged surface, Energy per unit volume and assignment.
February	unit-2. Magnetic Field : Biot-Savart law and its simple applications: straight wire and circular loop, Current Loop as a Magnetic Dipole and its Dipole Moment, Ampere's Circuital Law and its applications to (1) Solenoid and (2) Toroid, properties of B: curl and divergence, Magnetic Properties of Matter: Force on a dipole in an external field, Electric currents in Atoms, Electron spin and Magnetic moment, types of magnetic materials, Magnetization vector (M), Magnetic Intensity (H), Magnetic Susceptibility and permeability, Relation between B, H and M, Electronic theory of dia and paramagnetism, Domain theory of ferromagnetism (Langevin 's theory), Cycle of Magnetization- B-H curve and hysteresis loop: Energy dissipation, Hysteresis loss and importance of Hysteresis Curve.

March	unit-3. Time varying electromagnetic fields:
11111111	Electromagnetic inductioFaraday's laws of induction and Lenz's Law,
	Self-inductance, Mutual inductance, Energy stored in a Magnetic field,
	Derivation of Maxwell's equations, Displacement current, Maxwell's
	equations in differential and integral form and their physical
	significance.
	Electromagnetic Waves : Electromagnetic waves, Transverse nature of
	electromagnetic wave, energy transported by electromagnetic waves,
	Poynting vector, Poynting 's theorem. Propagation of Plane
	electromagnetic waves in free space & Dielectrics.
April	unit-4. DC current Circuits: Electric current and current density,
1 PIII	Electrical conductivity and Ohm's law (Review), Kirchhoff's laws for
	D.C. networks, Network theorems: Thevenin's theorem, Norton
	D.C. networks, Network theorems: Thevenin's theorem, Norton theorem, Superposition theorem.
	D.C. networks, Network theorems: Thevenin's theorem, Norton
	D.C. networks, Network theorems: Thevenin's theorem, Norton theorem, Superposition theorem.
	 D.C. networks, Network theorems: Thevenin 's theorem, Norton theorem, Superposition theorem. Alternating Current Circuits: A resonance circuit, Phasor, Complex Reactance and Impedance, Analysis for RL, RC and LC Circuits, Series
	 D.C. networks, Network theorems: Thevenin 's theorem, Norton theorem, Superposition theorem. Alternating Current Circuits: A resonance circuit, Phasor, Complex Reactance and Impedance, Analysis for RL, RC and LC Circuits, Series LCR Circuit: (1) Resonance, (2) Power Dissipation (3) Quality Factor
	 D.C. networks, Network theorems: Thevenin 's theorem, Norton theorem, Superposition theorem. Alternating Current Circuits: A resonance circuit, Phasor, Complex Reactance and Impedance, Analysis for RL, RC and LC Circuits, Series
	 D.C. networks, Network theorems: Thevenin 's theorem, Norton theorem, Superposition theorem. Alternating Current Circuits: A resonance circuit, Phasor, Complex Reactance and Impedance, Analysis for RL, RC and LC Circuits, Series LCR Circuit: (1) Resonance, (2) Power Dissipation (3) Quality Factor

Practicum	1. Determination of Impedance of an A.C. circuit and its
Tacucum	verification.
	2. Frequency of A.C. mains using an electromagnet.
	3. Frequency of A.C. mains Electrical vibrator.
	4. To study a series LCR circuit and determine its
	(a) Resonant frequency,
	(b) Quality factor.
	5. To study a parallel LCR circuit and determine its
	(a) Anti-resonant frequency and
	(b) Quality factor.
	6. Study of B-H curves of various materials using C.R.O, and
	determination of various parameters
	7.To study inverse square law using solar cell.

lesson plan

Session-2024-25 Class-B.sc II (Non-medical) Course- CC -3Thermodynamics and Statistical Physics Paper-B23-PHY-301 Date- 22 July ,2024 to 22 November , 2024 Faulty name -Ms Rachna July unit-1 THERMODYNAMICS-I Thermodynamic-systems, variables and equation of state, thermal equilibrium, Zeroth law of thermodynamics; Concept of heat, work and its sign (work doneby the system on the system) & its path dependence, First law of thermodynamics- its significance and limitations, internal energy as a state function, different types of process-isochoric process, isobaric process, adiabatic process, isothermal process, cyclic process, Reversible and irreversible process. August First law and cyclic process; Second law of thermodynamics and its significance, Carnot theorem; Absolute scale of temperature, Absolute Zero and magnitude of each division on work scale and perfect gas scale, Joule's free expansion, Joule Thomson effect, Joule-Thomson (Porous plug) experiment, conclusions and explanation, analytical treatment of Joule Thomson effect, Entropy, calculations of entropy of reversible and irreversible process, T-S diagram, entropy of a perfect gas, Nernst heat law (third law of thermodynamics); Liquefaction of gases, (oxygen, air, hydrogen and helium) solidification of helium below 4K, Cooling by adiabatic demagnetisation. September Unit -2. THERMODYNAMICS-II Derivation of Clausius-Clapeyron and Clausius latent heat equations and their significance, specific heat of saturated vapours, phase diagram and triple point of substance. development of Maxwell thermodynamical relations. а Thermodynamical functions: Internal energy (U), Helmholtz function (F), Enthalpy (H), Gibbs function (G) and therelations between them, derivation of thermodynamical relations from thermodynamical functions, Maxwell Application of Maxwell relations: relations between two specific heats of gas,

	Derivation of Clausius Clapeyron and Clausius equation, variation of intrinsic energy with volume for (i) perfect gas (ii) Vander wall gas (iii) solids and liquids, derivation of Stefan's law, adiabatic compression and expansion of gas & deduction of theory of Joule Thomson effect and assignment.
October	Unit -III. Statistical Physics-I Distribution of N (for N= 2, 3, 4) distinguishable and indistinguishable particles in two boxes of equal size, microstates and macrostates, thermodynamical probability, constraints and accessible states, statistical fluctuations, general distribution of distinguishable particles in compartments of different sizes, β -parameter, entropy and probability; Concept of phase space, division of phase space into cells, postulates of statistical mechanics; Classical and quantum statistics, basic approach to these statistics, Maxwell-Boltzmann statistics applied to an ideal gas in equilibrium-energy distribution law, Maxwell's distribution of speed & velocity (derivation required), most probable speed, average and r.m.s. speed, mean energy for Maxwellian distribution.
November	 Unit -IV. Statistical Physics-II Dulong and Petit Law, derivation of Dulong and Petit law from classical physics; Need of Quantum statistics- classical versus quantum statistics, Bose-Einstein energy distribution Law, Application of B. E. Statistics to Planck's radiation law, degeneracy and B. E. condensation; Fermi-Dirac energy distribution Law, F. D. gas and degeneracy, Fermi energy and Fermi temperature; F. D. energy distribution Law for electron gas in metals, zero point energy, average speed (at 0 K) of electron gas and revision.

Practicum	
(Any six)	1.To determine Mechanical Equivalent of Heat, J, by Callender and
	Barne's constant flow method.
	2. Measurement of Planck's constant using black body radiation.
	3. To determine Stefan's Constant.
	4. To determine the coefficient of thermal conductivity of copper by
	Searle's Apparatus.
	5. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
	6. To determine the coefficient of thermal conductivity of a bad
	conductor by Lee and Charlton's disc method.
	7. To determine the temperature co-efficient of resistance by Platinum
	resistance thermometer.
	8. To study the variation of thermo emf across two junctions of a
	thermocouple with temperature.
	9. To record and analyze the cooling temperature of an hot object as a
	function of time using a thermocouple and suitable data acquisition
	system
	10. To calibrate Resistance Temperature Device (RTD) using Null
	Method/Off-Balance Bridge
	11. To prove the law of probability by using one coin, two coins and 10
	or more coins.
	12. To determine the coefficient of increase of volume of air at constant
	pressure.
	13. To determine the coefficient of increase of pressure of air at
	constant volume.
	14. Computer simulation of Maxwell-Boltzmann distribution, FermiDirac & Bose-Einstein
	15. Study of statistical distribution from the given data and to find most probable, average, and rms value
	16. Mechanical Equivalent of heat (J) by Joule's calorimeter.
	17. Heating efficiency of electrical kettle with varying voltage.
	-

lesson plan

Session-2024-25 Class-B.sc II (No Course- CC-4 (W Paper-B23-PHY-4 Date- 1 January ,2 <u>Faulty name -Ms.</u> January	7ave and optics) 401 2025 to 30 April, 2025
February	Unit II. DIFFRACTION Fresnel's diffraction: Huygens-Fresnel's theory, Fresnel's assumptions, rectilinear propagation of light, diffraction at a straight edge, rectangular slit and diffraction at a circular aperature. Diffraction due to a narrow slit, diffraction due to a narrow wire. Fraunhoffer diffraction: Single slit diffraction, double slit diffraction, plane transmission grating spectrum, dispersive power of grating, limit of resolution, Rayleigh's criterion, resolving power of telescope and a grating
March	unit III. POLARIZATION Polarization: Polarisation by reflection, refraction and scattering, Malus Law, Phenomenon of double refraction, Huygens's wave theory of double refraction (Normal and oblique incidence), Analysis of polarized Light. Nicol prism, Quarter wave plate and half wave plate, production and detection of (i) Plane polarized light (ii) Circularly polarized light and (iii) Elliptically polarized light. Optical activity, Fresnel's theory of optical rotation, Specific rotation, Polarimeters (half shade and Biquartz)

April	unit IV. Lasers:
	Basic concept of absorption and emission of radiations,
	amplification and population inversion; Main components of lasers: (i)
	Active Medium (ii) Pumping (iii) Optical Resonator; Properties of laser
	beam: Monochromaticity, Directionality, Intensity, Coherence (Spatial &
	Temporal coherence); Metastable state, Excitation mechanism and Types of
	Lasers (He-Ne Laser & Ruby Laser), Applications of Lasers
	Fibre optics: Optical fibres and their properties, Principal of light
	propagation through a optical fibre, Acceptance angle and numerical
	aperture, Types of optical fibles: Single mode and multimode fibres,
	Advantages and Disadvantages of optical fibres, Applications of optical
	fibres, Fibre optic sensors: Fibre Bragg Grating

Practicum	1 To determine Refractive index of the material of a prism using
	sodium source.
	2 Determination of wave length of sodium light using Newton's
	Rings.
	3.To draw a graph between wave length and minimum deviation for
	various lines from a Mercury discharge source.
	4. Determination of wavelength of sodium light by using a
	diffraction grating.
	5. Resolving power of a telescope.
	6.Resolving power of a prism.
	7.Resolving power of a grating .

lesson plan

Session-2024-25 Class-B.sc III (Non- Medical) Subject -Physics Paper- PH - 501 (Quantum and laser Physics) Date- 22 July ,2024 to 22 November , 2024 Faulty name -Ms Rachna

July	Unit I: Origin quantum physics (Experimental basis) Overview, scale of quantum physics, boundary between classical and quantum phenomena, Photon, Photoelectric effect, Compton effect (theory and result), FrankHertz experiment, de-Broglie hypothesis. Davisson and Germer experiment, · G.P. Thomson experiment. Phase velocity, group velocity and their relation.
August	Heisenberg's uncertainty principle. Time energy and angular momentum, position uncertainty. Uncertainty principle from de Broglie wave. (Wave-particle duality). Gamma Ray Microscope, Electron diffraction from a slit. Derivation of 1-D time-dependent Schrodinger wave equation (subject to force, free particle)Derivation of 1-D time-dependent Schrodinger wave equation (subject to force, free particle). Time-independent Schrodinger wave equation, eigen values, eigen functions, wave functions and its significance. Orthogonality and Normalization of function, concept of observer and operator. Expectation values of dynamical quantities, probability current density and assignment.

September	
	Unit II: Application of Schrodinger wave equation:
	 (i) Free particle in one-dimensional box (solution of Schrödinger wave equation, eigen functions, eigen values, quantization of energy and momentum, nodes and anti nodes, zero point energy). (ii) One dimensional step potential E > Vo (Reflection and Transmission coefficient). (iii) One dimensional step potential E < Vo (penetration depth calculation). (iv) One dimensional potential barrier, E > Vo (Reflection and Transmission coefficient) (v) One-dimensional potential barrier, E < Vo (penetration or tunneling coefficient). (vi) Solution of Schrödinger equation for harmonic oscillator (quantization of energy, Zero-point energy, wave equation for ground state and excited states)
October	<i>Unit III: Laser Physics –I</i> Absorption and emission of radiation, Main features of a laser: Directionality, high intensity, high degree of coherence, spatial and temporal coherence, Einstein's coefficients and possibility of amplification, momentum transfer,life time of a level, kinetics of optical absorption ((two and three level rate equation, Fuchbauer landerburg formula). Population inversion: A necessary condition for light amplification, resonance cavity, laser pumping, Threshold condition for laser emission, line broadening mechanism, homogeneous and inhomogeneous line broadening (natural, collision and Doppler broadening).
November	<i>Unit IV: Laser Physics – II</i> He-Ne laser and RUBY laser (Principle, Construction and working), Optical properties of semiconductor, Semiconductor laser (Principle, Construction and working), Applications of lasers in the field of medicine and industry. and revision.

lesson plan

Session-2024 -25 Class-B.sc III (Non- Medical) Subject -Physics Paper- PH - 502 (Nuclear Physics) Date- 22 July ,2024 to 22 November , 2024 Faulty name -Ms Rachna

T1	U- 4 I. M. daw Church and M. dation of M. dati
July	Unit I: Nuclear Structure and Properties of Nuclei
	Nuclear composition (p-e and p-n hypotheses), Nuclear properties;
	Nuclear size, spin, parity, statistics, magnetic dipole moment,
	quadruple moment (shape concept).
August	Determination of mass by Bain-Bridge, Bain-Bridge and Jordan
	mass spectrograph. Determination of charge by Mosley Law.
	Determination of size of nuclei by Rutherford Back Scattering. mass
	and binding energy, systematic of nuclear binding energy, nuclear
	stability and revision.
September	Unit II: Nuclear Radiation decay Processes
-	Alpha-disintegration and its theory. Energetics of alpha-decay,
	Origin of continuous beta spectrum (neutrino hypothesis), types of
	beta-decay and energetics of beta-decay. Nature of gamma rays,
	Energetics of gamma rays. And assignment.
October	Radiation interaction
	Interaction of heavy charged particles (Alpha particles); Energy loss
	of heavy charged particle (idea of Bethe formula, no derivation),
	Range and straggling of alpha particles. Geiger-Nuttal law.
	Interaction of light charged particle (Beta-particle), Energy loss of
	beta-particles (ionization), Range of electrons, absorption of
	beta-particles. Interaction of Gamma Ray; Passage of Gamma
	radiations through matter (Photoelectric, Compton and pair
	production effect) electron-positron annihilation. Absorption of
	Gamma rays (Mass attenuation coefficient) and its application
	.Unit III:
	Nuclear Accelerators: Linear accelerator, Tendem accelerator,
	Cyclotron and Betatron accelerators.
	Cyclotion and Detation acceletators.

November	Gas filled counters; Ionization chamber, proportional counter, G.M.
	Counter (detailed study), Scintillation counter and semiconductor
	detector.
	Unit IV:
	Nuclear reactions, Elastic scattering, Inelastic scattering, Nuclear
	disintegration, Photonuclear reaction, Radiative capture, Direct
	reaction, Heavy ion reactions and spallation Reactions. Conservation
	laws, Q-value and reaction threshold. Nuclear Reactors, General
	aspects of Reactor Design. Nuclear fission and fusion reactors,
	(Principle, construction, working and use).

lesson plan

Session-2024-25 Class-B.sc III (Non- Medical) Subject -Physics Paper- PH - 601 (Solid state and Nano physics) Date- 01 January ,2025 to 30April, 2025 Faulty name -Ms Rachna

January	<u>Unit-1:</u> <u>c</u> rystalline and glassy forms,liquid crystals,crystal structure,periodicity,lattice and basis,crystal translation vectors and axes,unit cell and primitive cell,Winger Switzerland primitive cell,symmetry operations for a two dimensional crystal,Bravia's lattices in 2D&3D ,crystal planes and Miller indices,interplaner spacing,crystal structure of ZnS,NaCl,Diamond and revision.
February	<u>unit-2:</u> X-ray diffraction,Bragg's law and experimental X-ray diffraction methods: Laue's method,rotating crystal method,powder method,K-space and reciprocal lattice and its physical significance,reciprocal lattice vectors,reciprocal lattice of SCC,BCC,FCC and assignment on crystal structure.

March	<u>unit-3</u> (Superconductivity) :Introduction and survey of superconductivity,HTS, isotopic effect ,critical magnetic field,Meissen effect ,London theory and Pippard's equation ,classification of superconductor,BCS theory of superconductivity,flux quantisation,Josephson effect (AC and DC),practical application of superconductivity and their limitations, And revision.
April	<u>unit-4</u> : Nano physics definition , length scale of nano physics, importance of nano scale and technology, benefits and challenges in molecular manufacturing, molecular assembler concept, understanding advanced capabilities: SEM, TEM, FIM, STEM, STM, AFM, carbon fullerenes and nanotubes , revision and seminars.

lesson plan

Session-2024-25 Class-B.sc III (Non- Medical) Subject -Physics Paper- PH - 602 (Atomic and Molecular physics) Date- 01 January ,2025 to 30 April, 2025 Faulty name -Ms .Rachna

Tauty name -wi	
January	<u>Unit – I</u> : Historical background of atomic spectroscopy
	Introduction of early observations, emission and absorption spectra, atomic
	spectra, wave number, spectrum of Hydrogen atom in Balmer series, Bohr
	atomic model (Bohr 's postulates), spectra of Hydrogen rogen atom,
	explanation of spectral series in Hydrogen atom, un-quantized states and
	continuous spectra, spectral series in absorption spectra, effect of nuclear
	motion on line spectra (correction of finite nuclear mass), variation in Rydberg
	constant due to finite mass, short comings of Bohr's theory, Wilson sommerfeld
	quantization rule, de-Broglieinterpretation Bohr quantization law, and
	assignment.
February	Bohr's corresponding principle, Sommerfeld's extension of Bohr's model,
	Sommerfeld relativistic correction, Short comings of Bohr-Sommerfeld theory,
	Vector model; space quantization, electron spin, coupling of orbital and spin
	angular momentum, spectroscopic terms and their notation, quantum numbers
	associated with vector atom model, transition probability and selection rules.
	<u>Unit –II:</u> Vector Atom Model (single valance electron)
	Orbital magnetic dipole moment (Bohr megnaton), behavior of magnetic dipole
	in external magnetic filed; Larmor's precession and theorem. Penetrating and

	Non-penetrating orbits, Penetrating orbits on the classical model;Quantum
	defect, spin orbit interaction energy of the single valance electron, spin orbit
	interaction for penetrating and non-penetrating orbits.
March	quantum mechanical relativity correction, Hydrogen fine spectra, Main features
	of Alkali Spectra and their theoretical interpretation, term series and limits,
	Rydeburg-Ritze combination principle, Absorption spectra of Alkali atoms.
	observed doublet fine structure in the spectra of alkali metals and its
	Interpretation, Intensity rules for doublets, comparison of Alkali spectra and
	Hydrogen spectrum.
	<u>UNIT-III:</u> Vector Atom model (two valance electrons)
	Essential features of spectra of Alkaline-earth elements, Vector model for two
	valance electron atom: application of spectra.
	Coupling Schemes:LS Coupling Scheme and JJ coupling scheme, Interaction
	energy in L-S coupling (sp, pd configuration), Lande interval rule, Pauli
	principal and periodic classification of the elements. Interaction energy in JJ
	Coupling (sp, pd configuration), equivalent and non-equivalent electrons, Two
	valance electron system-spectral terms of non-equivalent and equivalent
	electrons, comparison of spectral terms in L-S And J-J coupling. Hyperfine
	structure of spectral lines and its origin; isotope effect, nuclear spin and seminar.
April	<u>Unit –IV:</u> Atom in External Field
	Zeeman Effect (normal and Anomalous), Experimental set-up for studying
	Zeeman effect, Explanation of normal Zeeman effect(classical and quantum
	mechanical), Explanation of anomalous Zeeman effect(Lande g-factor),
	Zeeman pattern of D1 and D2 lines of Naatom, Paschen-Back effect of a single
	valence electron system. Weak field Stark effect of Hydrogen atom.
	Molecular Physics: General Considerations, Electronic States of Diatomic
	Molecules, Rotational Spectra (Far IR and Microwave Region), Vibrational
	Spectra (IR Region), Rotator Model of Diatomic Molecule, Raman Effect,
	Electronic Spectra. And revision .

Practical	
	1.Study the C B transistor amplifier
	2. Study the C E transistor amplifier
	3. Numerical integration by Simpson 1/3 rule
	4. Fitting of a straight line using Least-Square method
	5. Using array variable, find out the average and standard deviation
	6.With the help of a program arrange the marks in ascending of
	descending order
	7.Determine the λNa by Fresnel Byprism
	8 Study double slit interference by He-Ne laser

9 Determine the diameter of a wire using (He-Ne Laser) diffraction
method
10 Determine the Young modulus 'Y' by Searl's interference method
11 Determine the resolving power of a prism
12 Thickness of a paper using interference fringes in an air wedge
13 Determine the resolving power of a transmission grating